Nevanlinna-pick Interpolation on Distinguished Varieties in the Bidisk

نویسنده

  • MICHAEL T. JURY
چکیده

This article treats Nevanlinna-Pick interpolation in the setting of a special class of algebraic curves called distinguished varieties. An interpolation theorem, along with additional operator theoretic results, is given using a family of reproducing kernels naturally associated to the variety. The examples of the Neil parabola and doubly connected domains are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Constrained Nevanlinna-pick Interpolation Problem

We obtain necessary and sufficient conditions for NevanlinnaPick interpolation on the unit disk with the additional restriction that all analytic interpolating functions satisfy f ′(0) = 0. Alternatively, these results can be interpreted as interpolation results for H∞(V ), where V is the intersection of the bidisk with an algebraic variety. We use an analysis of C*-envelopes to show that these...

متن کامل

The Takagi problem on the disk and bidisk

We give a new proof on the disk that a Pick problem can be solved by a rational function that is unimodular on the unit circle and for which the number of poles inside the disk is no more than the number of non-positive eigenvalues of the Pick matrix. We use this method to find rational solutions to Pick problems on the bidisk. Dedicated to the memory of Bela Szokefalvi-Nagy, whose work inspire...

متن کامل

Facial behaviour of analytic functions on the bidisk

We prove that if φ is an analytic function bounded by 1 on the bidisk D2 and τ is a point in a face of D2 at which φ satisfies Carathéodory’s condition then both φ and the angular gradient ∇φ exist and are constant on the face. Moreover, the class of all φ with prescribed φ(τ) and ∇φ(τ) can be parametrized in terms of a function in the two-variable Pick class. As an application we solve an inte...

متن کامل

Distinguished Varieties

A distinguished variety is a variety that exits the bidisk through the distinguished boundary. We show that Andô’s inequality for commuting matrix contractions can be sharpened to looking at the maximum modulus on a distinguished variety, not the whole bidisk. We show that uniqueness sets for extremal Pick problems on the bidisk always contain a distinguished variety.

متن کامل

Ela Spectral versus Classical Nevanlinna-pick Interpolation in Dimension Two∗

A genericity condition is removed from a result of Agler and Young which reduces the spectral Nevanlinna-Pick problem in two dimensions to a family of classical Nevanlinna-Pick problems. Unlike the original approach, the argument presented here does not involve state-space methods.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012